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Abstract 
 
A real time wireless Electroencephalogram (EEG) sensor system for drowsiness detection. Drowsy driving has been implicated as a casual 

factor in many accidents. Therefore real time drowsiness monitoring can prevent traffic accidents effectively. In this study, EEG sensor system 
was developed to monitor the human cognitive state and provide biofeedback to the driver when the drowsy state occurs. The proposed system 
consist a driver status in order to link the fluctuation of driver performance with changes in brain activity and process the EEG recordings. This 
detection system allows for earlier detection of driver drowsiness than driving pattern detection, But it is limited accuracy and insufficient 
reaction time in current driver drowsiness detection system have lead to the exploration of new techniques based on changes in body physiology 
as a function of fatigue. One promising method is the use of signals recorded from scalp electrodes that measure pattern of changing electrical 
activity in the brain as someone goes from a state of complete alertness to fatigue and drowsiness. This work performed a sustained-attention 
driving task and warning feedback system might lead to a practical closed-loop system to predict, monitor and rectify 
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I.  INTRODUCTION  

LONG-TERM, monotonous, or nighttime driving often Lowers driving performance. As is widely assumed, drowsiness 

significantly contributes to automobile accidents, leading to a considerable number of traffic collisions, injuries, and fatalities 
annually. Developing an effective system for detecting drowsiness is thus of priority concern for real-life driving. Such an in-
vehicle system must continuously monitor the arousal status of drivers and accurately predict the potential Several bio-behavioral 
signatures have been developed to monitor drowsiness of automobile drivers, including eye blinking and head nodding. However, 
false alarms are Likely since these visual attributes are not always accompanied by drowsiness. Related studies in recent decades 
have Demonstrated that electroencephalography (EEG), i.e., the electric fields produced by brain activity, is a highly effective 
Physiological indicator for assessing vigilance states. EEG is the only brain imaging modality with a high temporal and fine 
spatial resolution that is sufficiently lightweight to Be worn in operational settings. Numerous EEG studies suggest that delta (1–3 
Hz), theta (4–7 Hz), and alpha (8–12 Hz) activities are highly correlated with fatigue, drowsiness, Based on the neurological 
findings, drowsiness monitoring algorithms were developed by using several machine learning methods. The experimental results 
further demonstrated the feasibility of detecting or monitoring driver drowsiness level using EEG signals. However, designing a 
user acceptable and feasible EEG device to realize the real-time monitoring system is still a challenging task. Data collection in 
most EEG studies requires skin preparation and conductive gel application to ensure excellent electrical conductivity between a 
sensor and human skin. These procedures are time consuming, uncomfortable, and even painful for participants . Additionally, the 
signal quality may degrade over time as the conductive gel dries out. Hence, a wearable and wireless dry-electrode EEG system 
must be developed, capable of assessing the brain activities of participants performing ordinary tasks. According to a previous 
study, spectral dynamics of EEG at posterior brain regions are strongly correlated with the deterioration of task performance and 
declining vigilance.  
 
In the power spectra were successfully linked with behavioral performance by regression models. Additionally, the advantage of 
using the EEG signals of the posterior brain region has been shown in a recent study that the classification performance of the 
drowsiness detection system using the EEG signals of parietal and occipital regions is significantly better than that using the EEG 
signals of the frontal region. However, these studies still used conventional wet EEG electrodes in measuring EEG signals. Hence, 
acquiring the EEG signal of the hair region is a critical factor in developing a successful vigilance monitoring system. Recent 
studies have measured EEG signals using dry sensors, including silicone conductive rubber, comb-like electrode, gold-plated 
electrode, bristle-type electrode, and foam-based sensor. Table I lists some commercially available EEG systems. Most of these 
dry sensors are useful for hairy sites. EEG acquisition from the posterior region is available; This study develops an EEG-based 
in-vehicle system for assessing human vigilance level.  
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EEG dynamics and behavioral changes of participants are simultaneously recorded via a new dry-contact EEG device with spring-
loaded sensors when they perform a sustained-attention driving task. Additionally, an effective system using support vector 
regression(SVR) is developed to model the relationship between the brain activity and the behavioral performance. The system 
performance of SVR-based model is compared with other state-of-art regression methods. Moreover, the prediction model is 
implemented on a portable device. Furthermore, feasibility of the proposed system is demonstrated by monitoring human 
cognitive states during a sustained-attention driving task. 
 

II. SYSTEM ARCHITECTURE 
 
Fig. 1 shows the proposed EEG-based in-vehicle system, designed to monitor human vigilance level continuously during 
automobile driving. To construct the system, EEG signals were recorded using a mobile and wireless EEG device with dry sensors 
in a realistic dynamic driving simulator [32]. For data acquisition, the wireless and mobile EEG system, as shown in Fig. 
2,consists of dry electrodes, data acquisition module, Bluetooth transition module, and rechargeable battery. The device was 
designed for quickly and conveniently recording an EEG signal of the occipital region which is highly correlated with the 
vigilance.   
 
This dry EEG system surpasses the conventional wet electrodes with the conduction gel for long-term EEG measurements. 
Additionally, the signal quality of the used dry EEG system is comparable with that of the NeuroScan. For data analysis, the pre-
stimulus EEG spectra of all experimental trials were segmented and formed as a training dataset of samples after applying band-
pass filter (0.5–50 Hz) and fast Fourier transformation (FFT) [33]. Each training sample was accompanied with the behavioral 
performance in response to the given task, indicating the presumable vigilance of a driver. As for the core of the prediction 
system, the relationship between EEG and behavior was modelled using support vector regression (SVR). Finally, the predicted 
outputs were converted to different levels of vigilance. For real-world applications, the proposed system was implemented on a 
mobile device using JAVA programming language. The wireless and wearable EEG device transmitted its recorded data via a 
Bluetooth interface to the user’s device. The acquired EEG is displayed, processed, and analyzed in real time. The following 
sections introduce in detail the major components of the proposed system. 
 
A. Dry EEG Electrodes 
 
As shown in Fig. 2(a)–(c), a new dry-contact EEG device with spring-loaded sensors was proposed for potential operations in the 
presence or absence of hair and without any skin maintaining the Integrity of the Specifications preparation or conductive gel 
usage. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible 
substrate using a one-time forming process via an established injection molding procedure. With 17 spring contact probes, the 
flexible substrate allows for a high geometrical conformity between the sensor and the irregular scalp surface to maintain low 
skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, 
 
There by eliminating pain when force is applied. This sensor is more convenient than conventional wet electrodes in measuring 
EEG signals without any skin preparation or conductive gel usage. The flexible substrate also initiates a sensor buffer effect, and 
not as an independent document. Please do not revise any of the current designations. 
 
Brainsense is a sleek, single-channel, wireless headset that monitors your brain activity and translates EEg in to meaningfull data 
you can understand. The biosensor platform provides a powerful for the development of a variety ofapplication that promote mind 
health such improved focus, concentration, working memory and acuity. Other uses include meditation and relaxation monitoring 
or improved educationl processes. Our low cost, complete  OEM solution is a high-performance bo-signal on a single chip 
solution for accutrate mind activity detection and processing. Brainsense uses neurosky. TGAM 1 MODULE. 
 
Its s high performance Bluetooth module hc-05. This is a standalone BTM-05 bluetooth module, its work as TTL master/slave 
transceivermodule with serial uart PROTOCOL FOR COMMUNICATION . DESIGNED by  full speed Bluetooth operation with 
full piconet support it allows you to achieve the industry’s highest levels of sensitivity, accuracy, with lowest power consumption 
 
B. EEG Signal Acquisition Circuit 
 
According to Fig. 2(d), the EEG acquisition module consists of four major components [28]: a amplifier (ISL28470,Intersil, 
USA);, a front-end analog-to-digital converter (ADC, AD1298, Analog Devices, USA), a microcontroller (MSP430, Texas 
Instruments, USA), and a wireless transmission (BM0403, Unigrand Ltd., Taiwan). The voltage between the electrode and the 
reference was amplified using a biosignal amplifier with high input impedance. Meanwhile, the common-mode noise was rejected 
to precisely detect microvolt-level brain wave signals from the scalp. In particular, transfer function of the preamplifier, i.e., 
equivalent to the form of a high-pass filter with input signals of frequency, is as follows: 
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The amplified signal was digitized via an ADC with a 24 bit Resolution and 256 Hz sampling rate. The minimum input voltage of 
ADC ranges from to 1.94 mV. The maximum input voltage of ADC ranges from to 23.30 mV. In the microcontroller unit, the 
power-line interface was removed using a moving average filter with a frequency of 60 Hz. The digitalized signals after 
amplification and filtering were transmitted to a PC or a mobile device via Bluetooth with a baud-rate of 921600 bits/s. Power was 
supplied by a high capacity (750 mAh, 3.0 V) Li-ion battery, which provided 23 hr of continuous operation at maximum power 
consumption. 
 
C. EEG Signal Processing and Analysis 
 
During a 90 min driving experiment (see Section III), the study participants encountered hundreds of unexpected lane-departure 
events. In the signal processing, all 2 s baseline data (512sampling points) before the stimuli were extracted from continuous EEG 
signals. The data in this baseline period, without any confounding factors (i.e., events, motion stimuli, and motor actions) were an 
appropriate segmentation of EEG signals to link the physiological message with the driving performance. The data pair of the t-th 
trial is denoted as number of trial and refers to the driving performance, as measured by the reaction time (RT) in response to the 
lane-departure event. First, a type I Chebyshev band-pass filter with cut-off frequencies of 0.5 Hz and 50 Hz was applied on the 
raw data to remove artifacts. Second, physiological features were extracted by transforming the EEG signals of all trials, In to a 
frequency domain using FFT to characterize the spectral dynamics of brain activities. As shown in Fig. 4, the EEG signal was 
successively fed into a weighted time-frequency analysis before applying support vector regression. 
Power spectral density (PSD) of the EEG signal at time 
 
 
 

 
 
Fig. 1. Wireless and wearable EEG devices. (a)Wireless and wearable EEG headsets. (b) Five dry EEG electrodes and one patch sensor. (c) Spring-loaded probes. 
(d) Block diagram of the circuit. 
 

 
 

Fig. 2. Spectral EEG feature extraction. Power spectra at time , denoted by 
, are estimated by using FFT with Welch’s method and a weighting 

scheme, where the spectral feature are extracted every 2 s.
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windows of EEG spectrum, in which all frequency responses of EEG activations were calculated using a 512-point moving 
window  without overlapping points. Each 512 points (2 s) of data were further subdivided into several 128-point sub-windows 
advanced in a 64-point step. Windowed 128-point epochs were extended to 256 points by zero-padding in order to calculate the 
power spectra using a 256-point FFT (Welch’s method), subsequently yielding an estimate of the power spectral density with 30 
frequency bins from 1 to 30 Hz. The power spectra of these sub-windows were converted into a logarithmic scale and averaged to 
form a log power spectrum for each window. Furthermore, the estimated spectral powers of four channels were averaged, and the 
mean power spectrum of the first 10 min of the experiment, which was putatively the alert pattern, was subtracted from each 
estimated spectrum. 
 
Since the periods of the cyclic fluctuations of drowsiness exceeded 4 min , variance at cycle lengths shorter than 1 Min was 
eliminated using a weighted-averaging filter that advanced in a step of 2 s. Next, PSD of the window was multiplied by a 
weighted coefficient, where w decreased as Increased. In this study, and. compared with an unprocessed PSD without a weighted-
averaging 
 
D. Prediction Model 
 
According to previous studies, the behavioral lapses induced by drowsiness correlate with the changes of EEG activities. To link 
the power spectra with RTs, a nonlinear model is preferred in the model fitting to cover linear and nonlinear relationships between 
EEG power spectra and RTs. The support vector machine is a conventional means of solving the multidimensional function 
estimation problem, and has been applied to various fields such as classification and regression. When used to solve the function 
approximation and regression estimation problems, SVM is denoted as the support vector regression (SVR). Fig. 2 shows the 
graphical framework of SVR, including the support vectors, mapped vectors, and dot product operations. SVR is a complex and 
heavy-computational implementation of a forecasting algorithm based on structuring risk minimization principles to obtain an 
effective generalization capability SVR, can be formulated as minimization of  and the following: where determines the width of 
RBF function, is a constant trading off the higher-order versus lower-order term in the polynomial, is a scaling parameter of the 
input data, and is a shifting parameter controlling the threshold of mapping. The root mean square error (RMSE) is a conventional 
index for evaluating the performance of the predictor [40]. RMSE can be estimated as follows: 
 

III. EXPERIMENTAL DESIGN AND MATERIALS 

 

A. Subjects 
 
Fifteen subjects participated in a sustained-attention driving task. Each subject wore a wireless and wearable EEG headset, sat 
inside the vehicle, and controlled the simulator by using the steering wheel. To easily induce drowsiness, the experiment began in 
the early afternoon (13:00–14:00) after lunch and lasted for approximately 90 min when the circadian rhythm of sleepiness 
reached its peak. 
 
B. Driving Simulator 
 
As shown in Fig. 3(a), the synchronized scenes were projected from six projectors to constitute a surrounding 360 vision. At the 
center of the projected scenes, a real vehicle (without the unnecessary weight of an engine and other components) was mounted on 
a six degree-of-freedom motion platform. The motion sensation was then delivered along with the movement of the vehicle. A 
four-lane highway scene projected on a surrounding screen simulates a visually monotonous and unexciting stimulus of a driving 
condition to induce drowsiness. Additionally, the refresh rate of the highway scene was set properly to emulate a car driving at a 
fixed speed of 100 km/hr. The four lanes from left to right were separated by a median stripe. The distance from the left side to the 
right side of the road was equally divided into 240 units (digitized into values of 1–240): the widths of each lane and the car were 
60 units and 28 units, respectively. These unit were converted 
 
 

 
 

Fig. 3. Sustained-attention driving task implemented in an immersive driving 
simulator. (a) The driving simulator was mounted on a motion platform. The 
VR scene simulates nighttime cruising at a speed of 100 km/hr on a four-lane 
highway without other traffic. (b) The event-related lane-departure paradigm. 
Deviation onset: the time interval when the car starts to drift to the right or left 

of the cruising lane. (c) Response onset: the time interval when subjects use the steering wheel. (d) Response offset: the time interval when the car returns to the 
original lane. 
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Into the same ratio of the width of the real lane (3.75 m) and the car (1.8 m). Additionally, the server also received the data via 
RS-232 compatible serial port from the client which ran the VR programand recorded the behavioral response. This data stream 
with an 8-bit digital resolution including the vehicle trajectory (0–240), deviation onset (251/252 for left and right side of the 
deviation), response onset (253), and response offset (254), was synchronized with the EEG data for further event-related analysis. 
 
C. Experimental Paradigm 
 
The event-related land-departure paradigm (Fig. 3) was implemented in the VR driving simulator. This paradigm attempted to 
replicate a non ideal road surface to make the car randomly drift out of the cruising lane (deviation onset) at a Deviation speed of 
5 km/hr toward the left or right side. When encountering each lane-departure event [Fig. 3(b)], which occurred approximately 
every 8–12 s, the subject was instructed to steer the car (response onset) back to the center of the original lane (response offset) 
immediately [Fig. 3(c)]. During a 90 min experiment, the total number of trials available from each subject was next, the subject’s 
vigilance level in each trial was quantified using the reaction time (RT, the duration between the deviation onset and the response 
onset). As is assumed, although the subject was alert during the experiment, their RT was fast, whereas a slow RT accompanied 
the occurrence of drowsiness. 
 

IV. EXPERIMENTAL RESULTS 

 

A. Relationship Between RTS and Power Spectra 
 
Fig. 4 shows the spectral EEG changes in response to changes in the increase of RT, where denotes the square of Pearson’s 
correlation coefficient. The power spectra of four EEG recordings were averaged and converted into a logarithmic scale in order 
to form a log power spectrum. Amplitudes of the 2 s prestimulus EEG spectrum were then used to correlate with the following 
RT. Most studies  identified significant increases in the delta and theta activities, which were strongly leads to confusion because 
equations do not balance dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an 
equation. 
 
B. System Performance 
 
The feasibility of predicting drivers’ vigilance level based on spectral EEG patterns was examined by comparing the prediction 
performance of using  the power spectra of 1–30 Hz as the feature vectors for training a SVR. The prediction performances of 
SVR using linear, polynomial, radial basis function (RBF), and sigmoid kernel functions were also compared. Regarding the 
performance validation (Table II), two-fold cross-validation was performed and run 100 times to yield the average results. 
Restated, half of data (257 samples) were randomly selected as the training data, and the remaining data (257 samples) were 
selected as the validation data. The performance was evaluated by the root mean square error (RMSE) and squared between the 
recorded RT and the predicted RT. The number of trained support vectors was also reported. Each cell represents the of the 
measures. In terms to using the EEG features, SVR with a RBF kernel trained by the alpha power yields the lowest RMSE  and 
the highest , compared to the delta (RMS), theta (RMSE:), and beta powers (RMSE: When using the concatenation of four band 
powers, RMSE decreased to and the increased to .Moreover, the RMSE decreases to and the increased to when RBF-SVR used 
the spectral power of 1–30 Hz as the feature vectors.  
 

The number of support vectors tended to decrease if the number of features increased. Additionally, SVR with a RBF kernel, which 
was trained by the spectral power of 1–30 Hz, used the least number of support vectors (36% of the data), compared to other 
methods (50–70% of the data). The highlighted cells indicate the optimum results among all of the combinations of learning 
algorithms and spectral features. Overall, SVR using a RBF kernel yields a higher prediction accuracy than that using linear, 
polynomial, and sigmoid kernel functions. According to the safety distance between vehicles reported by the Road Safety 
Authority [49], a minimum reaction distance of 20 m is recommended when driving at a speed of 100 km/h. Notably, the RMSEs 
obtained by the proposed system ranges from 124 ms to 481 ms (about 3–13 m at a 100 km/hr car speed), which does not violate 
the recommended reaction distance. Additionally, the best performance of this study is comparable with our previous result 
(RMSE: 130 ms) [13] in which the drowsiness detection system used the EEG signals acquired by the NeuroScan. Fig. 4 further 
compares the prediction result of SVR using different kernel functions, where SVR was trained by using the spectral powers of 1–
30 Hz. The black trace is the recorded RT sorted from fast to slow, and the color traces are RT predicted by different methods. 
The black bars denote the absolute differences between the recorded RT and the predicted RT. This finding clearly indicates that 
SVR with a RBF kernel had a higher prediction accuracy than that of other methods, especially for the prediction of fast and slow 
RTs. Additionally, the uniform distribution of prediction errors across the entire spectrum of RT revealed how the RBF-based 
SVR provided the desired robustness for forecasting human behaviors. In our previous study [50], polymer foam-based sensors 
were used in the dry EEG system to record subject’s forehead EEG signal. Although RMSE of the prediction result was 
comparable with those obtained in this study  
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Fig. 4. RTs predicted by support vector regression using (a) linear, 

(b) polynomial, (c) RBF, and (d) sigmoid kernels. Black and color traces 
indicate the recorded RT and the prediction RT, respectively. Black bars 

denote the prediction errors (i.e., absolute difference between recorded RTs 
and predicted RTs). 

 
 

C. Real-Time Vigilance Prediction 
 
Above results suggest that the EEG-based system using the RBF-based SVR is a highly promising means of predicting the 
driver’s vigilance level. An attempt was also made to verify the feasibility of the proposed system by further implementing the 
SVR model in Java language as an Android application, in which the parameters of the implemented model (including slack 
parameter of SVR, gamma value of RBF kernel, and support vectors of the obtained model) were trained using Mat lab software. 
Fig. 9 shows a temporal relationship between the vigilance levels predicted by the proposed system and driver’s behavior in 
response to regular traffic events or emergencies when the participant performed the lane-departure driving task for approximately 
70 min. The predicted results were converted into eight degrees of vigilance level every 2 s according to Table III which shows 
the conversion of predicted RT into vigilance level. At the beginning of the experiment, the relatively alert state (bluish bars  was 
predicted and lasted continuously for several minutes) 
 
 

CONCLUSION 
 
This study developed a driver vigilance prediction system with a wireless and wearable EEG device, an efficient prediction model, 
and a real-time mobile App to remedy for drowsy driving. Based on the proposed EEG system, a link was established between the 
fluctuation in the behavioral index of driving performance (i.e., increase in RT) and the changes in the brain activity (i.e., trends in 
EEG power spectra). Experimental results indicated that the RMSE could minimize to 0.124 ms when the SVR with a RBF kernel 
was applied as the prediction model. Additionally, this SVR-based prediction model was implemented in real time for the subjects 
when 
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